Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells

نویسندگان

  • Gentian Yue
  • Fumin Li
  • Guang Yang
  • Weifeng Zhang
چکیده

We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes.

A low cost, low-temperature processable, highly efficient nickel sulfide counter electrode is demonstrated. Using the tailored, preformed nickel sulfide nanoparticles and electrostatic self-assembly, a novel counter electrode was fabricated that exceeded the efficiency of a conventional Pt-based cell.

متن کامل

Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employin...

متن کامل

High catalytic activity and stability of nickel sulfide and cobalt sulfide hierarchical nanospheres on the counter electrodes for dye-sensitized solar cells.

In situ grown nickel sulfide and cobalt sulfide hierarchical nanospheres on F-doped SnO2 (FTO) substrates exhibited comparable catalytic activities to sputtering Pt on the counter electrodes for dye-sensitized solar cells (DSSCs). The fresh cells with the nickel sulfide and cobalt sulfide on the counter electrodes could reach power conversion efficiencies of 6.81% and 6.59% respectively, approa...

متن کامل

Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells.

A platinum free counter electrode for dye sensitized solar cells was developed using graphene platelets (GP) supported nickel nanoparticles (NPs) as the active catalyst. Few layered GP were prepared by chemical oxidation of graphite powders followed by thermal exfoliation and reduction. The nanoparticles of nickel were deposited directly onto the platelets by pulsed laser ablation. The composit...

متن کامل

In situ synthesis of a NiS/Ni3S2 nanorod composite array on Ni foil as a FTO-free counter electrode for dye-sensitized solar cells.

A NiS/Ni3S2 nanorod composite array that directly grows on Ni foil has been used as a counter electrode for dye-sensitized solar cells; these nickel sulfide nanorods exhibit excellent photo-electrical conversion efficiency when compared with conventional noble-metal Pt electrodes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016